Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Environ Sci Nano ; 11(3): 1000-1011, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38496351

RESUMO

The presence of submicron- (1 µm-100 nm) and nanoplastic (<100 nm) particles within various sample matrices, ranging from marine environments to foods and beverages, has become a topic of increasing interest in recent years. Despite this interest, very few analytical techniques are known that allow for the detection of these small plastic particles in the low concentration ranges that they are anticipated to be present at. Research focused on optimizing surface-enhanced Raman scattering (SERS) to enhance signal obtained in Raman spectroscopy has been shown to have great potential for the detection of plastic particles below conventional resolution limits. In this study, we produce SERS substrates composed of gold nanostars and assess their potential for submicron- and nanoplastic detection. The results show 33 nm polystyrene could be detected down to 1.25 µg mL-1 while 36 nm poly(ethylene terephthalate) was detected down to 5 µg mL-1. These results confirm the promising potential of the gold nanostar-based SERS substrates for nanoplastic detection. Furthermore, combined with findings for 121 nm polypropylene and 126 nm polyethylene particles, they highlight potential differences in analytical performance that depend on the properties of the plastics being studied.

2.
Sci Total Environ ; 918: 170662, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38316311

RESUMO

The understanding of microplastic degradation and its effects remains limited due to the absence of accurate analytical techniques for detecting and quantifying micro- and nanoplastics. In this study, we investigated the release of nanoplastics and small microplastics in water from low-density polyethylene (LDPE) greenhouse cover films under simulated sunlight exposure for six months. Our analysis included both new and naturally aged (used) cover films, enabling us to evaluate the impact of natural aging. Additionally, photooxidation effects were assessed by comparing irradiated and non-irradiated conditions. Scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA) confirmed the presence of particles below 1 µm in both irradiated and non-irradiated cover films. NTA revealed a clear effect of natural aging, with used films releasing more particles than new films but no impact of photooxidation, as irradiated and non-irradiated cover films released similar amounts of particles at each time point. Raman spectroscopy demonstrated the lower crystallinity of the released PE nanoplastics compared to the new films. Flow cytometry and total organic carbon data provided evidence of the release of additional material besides PE, and a clear effect of both simulated and natural aging, with photodegradation effects observed only for the new cover films. Finally, our results underscore the importance of studying the aging processes in both new and used plastic products using complementary techniques to assess the environmental fate and safety risks posed by plastics used in agriculture.

3.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765613

RESUMO

Chitosan is obtained from the deacetylation of chitin, and it is known to possess antimicrobial activity. It has attracted attention as it may be used for treating infections caused by different types of microorganisms due to its broad spectrum. Its application in the form of micro- or nanoparticles (CM/CN) has expanded its usage, as in this form, it retains its activity, and remain stable in aqueous solutions. However, inconsistencies in the results reported by different authors have been identified. In this communication, the antimicrobial activity of CN produced from different starting materials was tested against Listeria monocytogenes. It was observed that, even though all the starting materials were reported to have a molecular weight (MW) below 200 kDa and degree of deacetylation (DD) > 75%, the size of the CNs were significantly different (263 nm vs. 607 nm). Furthermore, these differences in sizes exerted a direct effect on the antimicrobial properties of the particles, as when testing the ones with the smallest size, i.e., 263 nm, a lower Minimum Inhibitory Concentration (MIC) was achieved, i.e., 0.04 mg/mL. Even though the largest particles, i.e., 607 nm, in individual experiments were able to achieve an MIC of 0.03 mg/mL, the results with CN presented great variation among replicates and up to 0.2 mg/mL were needed in other replicates. The starting material has a critical impact on the properties of the CN, and it must be carefully characterized and selected for the intended application, and MW and DD solely do not fully account for these properties.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513123

RESUMO

Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being scarce (2.31 × 106 ± 9.05 × 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact that some of the developmental parameters in zebrafish embryos are altered should be considered for further investigation. More in-depth analysis of these NPs transformations in the digestive tract of humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.

5.
Mikrochim Acta ; 190(8): 287, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420086

RESUMO

A bioaccumulation study in red (Palmaria palmata) and green (Ulva sp.) seaweed has been carried out after exposure to different concentrations of citrate-coated titanium dioxide nanoparticles (5 and 25 nm) for 28 days. The concentration of total titanium and the number and size of accumulated nanoparticles in the seaweeds has been determined throughout the study by inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (SP-ICP-MS), respectively. Ammonia was used as a reaction gas to minimize the effect of the interferences in the 48Ti determination by ICP-MS. Titanium concentrations measured in Ulva sp. were higher than those found in Palmaria palmata for the same exposure conditions. The maximum concentration of titanium (61.96 ± 15.49 µg g-1) was found in Ulva sp. after 28 days of exposure to 1.0 mg L-1 of 5 nm TiO2NPs. The concentration and sizes of TiO2NPs determined by SP-ICP-MS in alkaline seaweed extracts were similar for both seaweeds exposed to 5 and 25 nm TiO2NPs, which indicates that probably the element is accumulated in Ulva sp. mainly as ionic titanium or nanoparticles smaller than the limit of detection in size (27 nm). The implementation of TiO2NPs in Ulva sp. was confirmed by electron microscopy (TEM/STEM) in combination with energy dispersive X-Ray analysis (EDX).


Assuntos
Nanopartículas , Alga Marinha , Ulva , Titânio/química , Espectrometria de Massas/métodos , Bioacumulação , Nanopartículas/química
6.
J Hazard Mater ; 458: 131915, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413800

RESUMO

The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.


Assuntos
Linguados , Nanopartículas Metálicas , Nanopartículas , Animais , Estresse Oxidativo , Ecossistema , Nanopartículas/toxicidade , Nanopartículas/química , Fígado/metabolismo , Titânio/química , Ácido Cítrico/metabolismo , Ingestão de Alimentos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
7.
Materials (Basel) ; 16(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37297268

RESUMO

One of the main challenges of photocatalysis is to find a stable and effective photocatalyst, that is active and effective under sunlight. Here, we discuss the photocatalytic degradation of phenol as a model pollutant in aqueous solution using NUV-Vis (>366 nm) and UV (254 nm) in the presence of TiO2-P25 impregnated with different concentrations of Co (0.1%, 0.3%, 0.5%, and 1%). The modification of the surface of the photocatalyst was performed by wet impregnation, and the obtained solids were characterized using X-ray diffraction, XPS, SEM, EDS, TEM, N2 physisorption, Raman and UV-Vis DRS, which revealed the structural and morphological stability of the modified material. BET isotherms are type IV, with slit-shaped pores formed by nonrigid aggregate particles and no pore networks and a small H3 loop near the maximum relative pressure. The doped samples show increased crystallite sizes and a lower band gap, extending visible light harvesting. All prepared catalysts showed band gaps in the interval 2.3-2.5 eV. The photocatalytic degradation of aqueous phenol over TiO2-P25 and Co(X%)/TiO2 was monitored using UV-Vis spectrophotometry: Co(0.1%)/TiO2 being the most effective with NUV-Vis irradiation. TOC analysis showed ca. 96% TOC removal with NUV-Vis radiation, while only 23% removal under UV radiation.

8.
Anal Bioanal Chem ; 415(17): 3399-3413, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37162523

RESUMO

The current research deals with the use of single-cell inductively coupled plasma-mass spectrometry (scICP-MS) for the assessment of titanium dioxide nanoparticle (TiO2 NP) and silver nanoparticle (Ag NP) associations in cell lines derived from aquaculture species (sea bass, sea bream, and clams). The optimization studies have considered the avoidance of high dissolved background, multi-cell peak coincidence, and possible spectral interferences. Optimum operating conditions were found when using a dwell time of 50 µs for silver and 100 µs for titanium. The assessment of associated TiO2 NPs by scICP-MS required the use of ammonia as a reaction gas (flow rate at 0.75 mL min-1) for interference-free titanium determinations (measurements at an m/z ratio of 131 from the 48Ti(NH)(NH3)4 adduct). The influence of other parameters such as the number of washing cycles and the cell concentration on accurate determinations by scICP-MS was also fully investigated. Cell exposure trials were performed using PVP-Ag NPs (15 and 100 nm, nominal diameter) and citrate-TiO2 NPs (5, 25, and 45 nm, nominal diameter) at nominal concentrations of 10 and 50 µg mL-1 for citrate-TiO2 NPs and 5.0 and 50 µg mL-1 for PVP-Ag NPs. Results have shown that citrate-TiO2 NPs interact with the outer cell membranes, being quite low in the number of citrate-TiO2 NPs that enters the cells (the high degree of aggregation is the main factor which leads to the aggregates being in the extracellular medium). In contrast, PVP-Ag NPs have been found to enter the cells.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Titânio/química , Nanopartículas Metálicas/química , Prata/química , Nanopartículas/química , Ácido Cítrico , Linhagem Celular , Aquicultura
9.
ACS Appl Bio Mater ; 6(2): 754-764, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36696391

RESUMO

Bacterial colonization and biofilm formation are found on nearly all wet surfaces, representing a serious problem for both human healthcare and industrial applications, where traditional treatments may not be effective. Herein, we describe a synergistic approach for improving the performance of antibacterial surfaces based on microstructured surfaces that embed titanium dioxide nanoparticles (TiO2 NPs). The surfaces were designed to enhance bacteria entrapment, facilitating their subsequent eradication by a combination of UVC disinfection and TiO2 NPs photocatalysis. The efficacy of the engineered TiO2-modified microtopographic surfaces was evaluated using three different designs, and it was found that S2-lozenge and S3-square patterns had a higher concentration of trapped bacteria, with increases of 70 and 76%, respectively, compared to flat surfaces. Importantly, these surfaces showed a significant reduction (99%) of viable bacteria after just 30 min of irradiation with UVC 254 nm light at low intensity, being sixfold more effective than flat surfaces. Overall, our results showed that the synergistic effect of combining microstructured capturing surfaces with the chemical functionality of TiO2 NPs paves the way for developing innovative and efficient antibacterial surfaces with numerous potential applications in the healthcare and biotechnology market.


Assuntos
Aderência Bacteriana , Luz , Humanos , Titânio/farmacologia , Bactérias , Antibacterianos/farmacologia
10.
Chem Commun (Camb) ; 58(86): 12074-12077, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218330

RESUMO

The reactivity of the novel Re(I) catalyst [Re(C12Anth-py2)(CO)3Br] is modulated by its interactions with the covalent organic framework (COF) TFB-BD. The complex catalyzes either reductive etherification, oxidative esterification, or transfer hydrogenation depending on its local environment (embedded in TFB-BD, in homogeneous solution or co-incubated with TFB-BD, respectively). The results highlight that COFs can drastically modulate the reactivity of homogeneous catalysts.

11.
Chemosphere ; 308(Pt 1): 136110, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36007739

RESUMO

Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.


Assuntos
Linguados , Nanopartículas Metálicas , Ácidos Nucleicos , Animais , Cálcio , Cromatografia Líquida , Citratos , Nanopartículas Metálicas/química , NADH Desidrogenase , Povidona/química , Proteômica , Prata/química , Espectrometria de Massas em Tandem , Hormônios Tireóideos , Titânio/química
12.
Adv Exp Med Biol ; 1379: 3-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35760986

RESUMO

Biosensors have a great impact on our society to enhance the life quality, playing an important role in the development of Point-of-Care (POC) technologies for rapid diagnostics, and monitoring of disease progression. COVID-19 rapid antigen tests, home pregnancy tests, and glucose monitoring sensors represent three examples of successful biosensor POC devices. Biosensors have extensively been used in applications related to the control of diseases, food quality and safety, and environment quality. They can provide great specificity and portability at significantly reduced costs. In this chapter are described the fundamentals of biosensors including the working principles, general configurations, performance factors, and their classifications according to the type of bioreceptors and transducers. It is also briefly illustrated the general strategies applied to immobilize biorecognition elements on the transducer surface for the construction of biosensors. Moreover, the principal detection methods used in biosensors are described, giving special emphasis on optical, electrochemical, and mass-based methods. Finally, the challenges for biosensing in real applications are addressed at the end of this chapter.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Biossensoriais/métodos , Glicemia , Automonitorização da Glicemia , COVID-19/diagnóstico , Humanos
13.
Nanoscale Adv ; 4(2): 387-392, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35178499

RESUMO

Control over the synthesis of anisotropic nanoparticles is crucial as slight differences in their size, shape, sharpness, or the number of tips in the case of gold nanostars, has an inordinate influence on their properties and functionality for future applications. Herein, we show that the supplier and purity of polyvinylpyrrolidone (PVP) can significantly alter the synthesis of gold nanostars, demonstrating that impurities, not PVP itself, are the main factor responsible for star-like shape formation. We demonstrate that in the presence of pure PVP and N,N-dimethylformamide, the use of hydrazine leads to the formation of branched nanoparticles. This synthetic approach opens the door to solving issues associated with the use of commercial PVP during the synthesis of gold nanostars.

14.
Analyst ; 146(24): 7748-7749, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34813639

RESUMO

Correction for 'A novel microfluidic system for the sensitive and cost-effective detection of okadaic acid in mussels' by Ana Castanheira et al., Analyst, 2021, 146, 2638-2645, DOI: 10.1039/D0AN02092C.

15.
Nanomaterials (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209606

RESUMO

Nanomaterials significantly contribute to the development of new solutions to improve consumer products properties. Silver nanoparticles (AgNPs) are one of the most used, and as human exposure to such NPs increases, there is a growing need for analytical methods to identify and quantify nanoparticles present in the environment. Here we designed a detection strategy for AgNPs in seawater using surface-enhanced Raman Scattering (SERS). Three commercial AgNPs coated with polyvinylpyrrolidone (PVP) were used to determine the relative impact of size (PVP-15nmAgNPs and PVP-100nmAgNPs) and aggregation degree (predefined Ag aggregates, PVP-50-80nmAgNPs) on the SERS-based detection method. The study of colloidal stability and dissolution of selected AgNPs into seawater was carried out by dynamic light scattering and UV-vis spectroscopy. We showed that PVP-15nmAgNPs and PVP-100nmAgNPs remained colloidally stable, while PVP-50-80nmAgNPs formed bigger aggregates. We demonstrated that the SERS-based method developed here have the capacity to detect and quantify single and aggregates of AgNPs in seawater. The size had almost no effect on the detection limit (2.15 ± 1.22 mg/L for PVP-15nmAgNPs vs. 1.51 ± 0.71 mg/L for PVP-100nmAgNPs), while aggregation caused an increase of 2.9-fold (6.08 ± 1.21 mg/L). Our results demonstrate the importance of understanding NPs transformation in seawater since this can influence the detection method performance.

16.
Analyst ; 146(8): 2638-2645, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33660716

RESUMO

Okadaic acid (OA) is produced by marine dinoflagellates and it can be easily accumulated in shellfish, causing intoxications when consumed by humans. Consequently, there is a need for sensitive, reliable and cost-effective methods to detect OA in real samples. In this work, we developed a novel and affordable microfluidic system to detect OA based on the protein phosphatase 1 inhibition colorimetric assay. This enzyme was immobilized in a microfluidic chamber by physisorption in an alumina sol-gel. The results show good enzyme stability over time when maintained at 4 °C. The developed system was sensitive for OA standard solutions, presenting a limit of detection (LOD) of 11.6 nM over a large linear range (43.4 to 3095.8 nM). Our method revealed an LOD as low as 0.2 µg kg-1 and a linear range between 1.47 and 506 µg kg-1 for extracted mussel matrix, detecting OA concentrations in contaminated mussels much lower than the regulated limit (160 µg kg-1). The enzyme stability and reusability along with the simplicity and low cost associated with microfluidics systems make this method very interesting from a commercial point of view.


Assuntos
Bivalves , Microfluídica , Animais , Análise Custo-Benefício , Humanos , Ácido Okadáico , Frutos do Mar/análise
17.
Materials (Basel) ; 13(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325992

RESUMO

We developed a droplet-based optofluidic system for the detection of foodborne pathogens. Specifically, the loop-mediated isothermal amplification (LAMP) technique was combined with surface-enhanced Raman scattering (SERS), which offers an excellent method for DNA ultradetection. However, the direct SERS detection of DNA compromises the simplicity of data interpretation due to the variability of its SERS fingerprints. Therefore, we designed an indirect SERS detection method using multifunctional gold nanoparticles (AuNPs) based on the formation of pyrophosphate generated during the DNA amplification by LAMP. Towards this goal, we prepared multifunctional AuNPs involving three components with key roles: (1) thiolated poly(ethylene glycol) as stabilizing agent, (2) 1-naphthalenethiol as Raman reporter, and (3) glutathione as a bioinspired chelating agent of magnesium (II) ions. Thus, the variation in the SERS signal of 1-naphthalenethiol was controlled by the aggregation of AuNPs triggered by the complexation of pyrophosphate and glutathione with free magnesium ions. Using this strategy, we detected Listeria monocytogenes, not only in buffer, but also in a food matrix (i.e., ultra-high temperaturemilk) enabled by the massive production of hotspots as a result of the self-assemblies that enhanced the SERS signal. This allowed the development of a microdroplet-LAMP-SERS platform with isothermal amplification and real-time identification capabilities.

18.
Nanoscale Adv ; 2(10): 4951-4960, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132922

RESUMO

Although environmental and toxicity concerns are inherently linked, catalysis using photoactive nanoparticles and their hazardous potential are usually addressed independently. A toxicological assessment under the application framework is particularly important, given the pristine nanoparticles tend to change characteristics during several processes used to incorporate them into products. Herein, an efficient TiO2-functionalized macroporous structure was developed using widely adopted immobilization procedures. The relationships between photocatalysis, catalyst release and associated potential environmental hazards were assessed using zebrafish embryonic development as a proxy. Immobilized nanoparticles demonstrated the safest approach to the environment, as the process eliminates remnant additives while preventing the release of nanoparticles. However, as acute sublethal effects were recorded in zebrafish embryos at different stages of development, a completely safe release of TiO2 nanoparticles into the aquatic environment cannot be advocated.

19.
Nanoscale Adv ; 2(12): 5760-5768, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133890

RESUMO

Upon dissolution of silver nanoparticles, silver ions are released into the environment, which are known to induce adverse effects. However, since dissolution studies are predominantly performed in water and/or at room temperature, the effects of biological media and physiologically relevant temperature on the dissolution rate are not considered. Here, we investigate silver nanoparticle dissolution trends based on their plasmonic properties under biologically relevant conditions, i.e. in biological media at 37 °C over a period of 24 h. The studied nanoparticles, surface-functionalized with polyvinylpyrrolidone, beta-cyclodextrin/polyvinylpyrrolidone, and starch/polyvinylpyrrolidone, were analysed by UV-Vis spectroscopy, lock-in thermography and depolarized dynamic light scattering to evaluate the influence of these coatings on silver nanoparticle dissolution. Transmission electron microscopy was employed to visualize the reduction of the nanoparticle core diameters. Consequently, the advantages and limitations of these analytical techniques are discussed. To assess the effects of temperature on the degree of dissolution, the results of experiments performed at biological temperature were compared to those obtained at room temperature. Dissolution is often enhanced at elevated temperatures, but has to be determined individually for every specific condition. Furthermore, we evaluated potential nanoparticle aggregation. Our results highlight that additional surface coatings do not necessarily hinder the dissolution or aggregation of silver nanoparticles.

20.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835823

RESUMO

The overt hazard of carbon nanotubes (CNTs) is often assessed using in vitro methods, but determining a dose-response relationship is still a challenge due to the analytical difficulty of quantifying the dose delivered to cells. An approach to accurately quantify CNT doses for submerged in vitro adherent cell culture systems using UV-VIS-near-infrared (NIR) spectroscopy is provided here. Two types of multi-walled CNTs (MWCNTs), Mitsui-7 and Nanocyl, which are dispersed in protein rich cell culture media, are studied as tested materials. Post 48 h of CNT incubation, the cellular fractions are subjected to microwave-assisted acid digestion/oxidation treatment, which eliminates biological matrix interference and improves CNT colloidal stability. The retrieved oxidized CNTs are analyzed and quantified using UV-VIS-NIR spectroscopy. In vitro imaging and quantification data in the presence of human lung epithelial cells (A549) confirm that up to 85% of Mitsui-7 and 48% for Nanocyl sediment interact (either through internalization or adherence) with cells during the 48 h of incubation. This finding is further confirmed using a sedimentation approach to estimate the delivered dose by measuring the depletion profile of the CNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...